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We study theoretically the optical response of a double quantum dot structure to an ultrafast optical excita-
tion. We show that the interplay of a specific type of coupling between the dots and their collective interaction
with the radiative environment leads to very characteristic features in the time-resolved luminescence as well
as in the absorption spectrum of the system. For a sufficiently strong coupling, these effects survive even if the
transition energy mismatch between the two dots exceeds by far the emission linewidth.
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I. INTRODUCTION

Systems composed of two quantum dots �QDs� have at-
tracted much attention in recent years. Many theoretical and
experimental results have demonstrated that the physical
properties of such double quantum dots �DQDs� are much
richer than those of individual ones. On one hand, this may
pave the way to new applications, including long-time stor-
age of quantum information1 and conditional optical control2

that may lead to an implementation of a two-qubit quantum
gate,3 generation of entangled photons,4 or coherent optical
spin control and entangling.5–7 On the other hand, in order to
take advantage of these extended possibilities, the properties
of DQDs have to be understood and controlled.

There are two major factors that determine the physical
�in particular, optical� properties of DQDs: the coupling be-
tween the dots and their interaction with the environment. In
both these areas, new features appear, as compared to the
physics of individual dots. Both problems have been in the
focus of extensive experimental and theoretical works but
many important questions remain open.

Coupling between the dots is essential for quantum con-
ditional control, entanglement formation, and implementa-
tion of two-qubit gates. It is therefore understandable that
considerable experimental effort has been devoted to demon-
strating its existence in double-dot systems,8–12 while theo-
retical studies were aimed at characterizing its signatures in
the optical response of DQDs.13

Coupling of DQDs to their environment is affected by
collective effects, which may lead to superradiance
phenomena.14 Theoretical studies on the dephasing �in par-
ticular, decay of entanglement� in double-dot systems have
shown that coherence properties strongly depend on whether
the dots are coupled to a common reservoir or to separate
reservoirs.15–18 The collective nature of the coupling to the
environment allows one to construct arrays �collective quan-
tum bits�, which are more resistant to decoherence than in-
dividual systems.19,20 In fact, in any such array of two-level
systems collectively coupled to their common reservoir, the
dephasing of some states is slowed down, while other states
decohere faster. In the case of radiative decay, an essential
role is played by the transition energy mismatch between the
systems forming the array.21 These subradiance and superra-
diance effects influence the optical response of DQDs and
can affect the coherence properties of DQD-based quantum
devices.

Since the paper by Dicke,22 coherent effects in the radia-
tive decay of two or more atoms have been studied in nu-
merous works. The emission from identical23–27 and
nonidentical28,29 two-level systems has been studied and
methods suitable for the description of arrays of various
shapes have been developed.30,31 Systems formed by QDs
share many features with those made of natural atoms. In
particular, QD samples may be modeled as ensembles of
two-level systems with parallel transition dipoles, corre-
sponding to the fundamental optical �interband� transition
between the ground �“empty dot”� state and the confined
exciton state �electron-hole pair in the dot�, although one
should not expect the transition energies to be exactly
matched in these artificial objects. Nonetheless, these semi-
conductor structures are specific with some respects.

The spacing between QDs in intentionally manufactured
DQD systems is typically on the order of nanometers, that is
two to three orders of magnitude smaller than the wavelength
of the resonantly coupled radiation. This allows one to as-
sume the Dicke limit of the coupling and neglect the retar-
dation effects, which were one of the major concerns in the
general theory.25,29 On the other hand, small distance be-
tween the two dots precludes individual addressing of each
system by the exciting field, so that only certain initial states
may be prepared. This means, in particular, that the two-
excitation �biexciton, i.e., one electron-hole pair in each QD
of the DQD structure� states must be included in the descrip-
tion �except for the weak excitation limit�.

Another important feature that distinguishes QDs from
atomic samples is the presence of two kinds of dipole cou-
plings. One of them is the direct interaction between static
dipole moments associated with the electron-hole charge dis-
tribution in the two dots.2 This kind of coupling is obviously
present only if the two dots are occupied by excitons and its
effect is to shift the energy of the biexciton state �denoted by
VB in Fig. 1�. The other coupling is related to the interband
matrix elements of the electric dipole moment and is analo-
gous to the Förster coupling in molecular systems as well as
to dipole couplings between atoms which appear in the de-
scription of superradiance phenomena in atomic samples. It
couples the two single-exciton states of the system via a
process that may be imagined as a recombination of the ex-
citon in one of the dots with the subsequent transfer of en-
ergy to the other one �via Coulomb interaction�, where the
exciton is recreated �this coupling is denoted by V in Fig. 1�.
Thus, this coupling has an “excitation transfer” character. In
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QDs, this interaction is modified by the finite size of the
charge distribution �the QD size is comparable with the in-
terdot distance� and has a finite value in the formal limit of
vanishing distance.32–34 Therefore, it is not a universal func-
tion of the distance. Finally, apart from this dipole-dipole
coupling, other kinds of interaction may be present �e.g.,
effective “tunneling” coupling accounting for a slight over-
lap of wave functions which may dominate over the Förster
coupling for closely spaced dots�. For these reasons, the
strength of the coupling between the dots becomes an essen-
tially independent parameter. All in all, there are three inde-
pendent parameters governing the radiative properties of a
double-dot system in the Dicke limit compared to two in the
case of atoms.

In this paper we study the interplay of all the factors af-
fecting the optical response of a DQD: the coupling between
the two dots forming the DQD, the mismatch between their
transition energies, and their collective interaction with the
radiation environment �vacuum�. With the recent experimen-
tal progress,35,36 optical studies of a single resonantly driven
nanostructure have become feasible. Therefore, we study the
simplest optical property of the system, that is, the response
to a single ultrafast pulse tuned to the fundamental interband
transition of the system. The analysis includes the linear re-
gime, where the spectral properties of the optical response
yield the absorption spectrum of the system, as well as the
higher-order contributions, which are affected by the
exciton-biexciton dynamics. We show that both the time-
resolved signal and its frequency spectrum can show clear
signatures of collective coupling to the radiation reservoir.
Moreover, in the realistic case of nonidentical dots, the strik-
ing features related to collective radiative relaxation appear
only when the interdot coupling is strong enough and has the
excitation transfer character �as opposed to the occupation-
preserving biexciton shift�. In this way, our results provide a
sensitive test for the appearance of a specific kind of cou-
pling between the dots.

The paper is organized as follows. In Sec. II, we describe
the system under study and define its model. In Sec. III,
equations describing the evolution of the optical polarization

are derived. Section IV contains the discussion of the results.
The summary and final remarks are contained in Sec. V.

II. SYSTEM

The system under study is a DQD composed of two QDs
placed at a distance much smaller than the relevant photon
wavelength. We restrict the discussion to the ground exciton
states in the two dots. Due to strong electron-hole Coulomb
attraction, the “spatially direct” states �electron-hole pairs
confined in the same dot� have much lower energy than the
“dissociated” states �we do not consider external electric
fields which would change this picture37,38�. Therefore, we
include only the spatially direct states in our model. We as-
sume also that the polarization of the laser pulse corresponds
to a polarization eigenstate of the excitons, which allows us
to include only one out of the two bright states in each dot
and to describe the DQD as a four-level system, with the
state �0� representing empty dots; �1� and �2� denoting the
single-exciton states with an exciton localized in the first and
in the second dots, respectively; and �3� representing the
“molecular biexciton” state, that is, the state with both dots
occupied by an exciton. We denote the energies correspond-
ing to the fundamental optical transition in the two dots by
E1,2=E�� and allow for a coupling between the dots,
whose amplitude is V. The latter may originate either from
the interband dipole �Förster� coupling between the dots13 or
appear as an effective description of tunnel coupling if the
carrier wave functions in the two dots overlap. In addition,
excitons confined in the two dots interact via their static
dipole moments, which shift the energy of the biexciton state
by VB. The Hamiltonian describing the isolated DQD system
is then

H̃X = �E + ���1��1� + �E − ���2��2� + �2E + VB��3��3�

+ V��1��2� + �2��1�� .

The structure of energy levels is shown in Fig. 1.
The two dots interact with their common radiative reser-

voir. The Hamiltonian describing this interaction is

H̃int = i�−�
k,�

d · ê��k�� ��k

2�0�rv
bk,�

† + H.c.,

with �−=�+
† = ��−

�1�+�−
�2��, where �−

�1�= �0��1�+ �2��3� and
�−

�2�= �0��2�+ �1��3� are annihilation operators for an exciton
in the first and second dots, respectively; k is a photon wave
vector; � denotes polarizations; bk,� ,bk,�

† are photon annihi-
lation and creation operators; d is the interband dipole mo-
ment �for simplicity equal for both QDs�; ê��k� is a unit
polarization vector; �0 is the vacuum permittivity; �r is the
dielectric constant of the semiconductor; and v is the normal-
ization volume for the em modes.

Finally,

Hphot = �
k,�

��kbk,�
† bk,�

is the Hamiltonian of the photon reservoir, where �k is the
frequency of the photon with a wave vector k. We will de-

FIG. 1. �Color online� Graphical representation of the energy
levels �basis states� and couplings in the double quantum dot
system.

ANNA SITEK AND PAWEŁ MACHNIKOWSKI PHYSICAL REVIEW B 80, 115319 �2009�

115319-2



scribe the evolution in a “rotating basis” defined by the
unitary transformation

U = eiE��1��1�+�2��2�+2�3��3��t/�+iHphott/�.

The transformed Hamiltonian is

H = U�H̃X + H̃int + Hphot�U† + i�
dU

dt
U† = HX + Hint,

where

HX = ���1��1� − �2��2�� + VB�3��3� + V��1��2� + �2��1��
�1�

and

Hint = i�−�
k,�

d · ê��k�� ��k

2�0�rv
ei��k−E/��tbk,�

† + H.c.

III. SYSTEM EVOLUTION AND THE OPTICAL
RESPONSE

In this section we will describe the evolution of the DQD
system after an instantaneous excitation with an ultrashort
pulse. An analysis of both the time-resolved and spectrally
resolved response will be performed. In the linear-response
limit, the latter provides the linear susceptibility from which
the absorption spectrum can be derived.

The source of the optical signal from the QD system is the
electric dipole moment �polarization� related to the interband
transition. Assuming identical magnitude and orientation of
the transition dipoles in both dots, the relevant �interband�
part of the dipole moment operator can be written as

d̂ = d�− + H.c.

The magnitude of the positive frequency part of the emitted
coherent optical field, normalized to its initial value is, there-
fore,

P�t� = i
	10�t� + 	20�t� + 	31�t� + 	32�t�

	10�0� + 	20�0� + 	31�0� + 	32�0�
, �2�

where 	 is the density matrix of the four-level DQD system
and 	ij�t�= �i�	�t��j�. The matrix elements 	10 and 	20 are
related to the coherences between the ground state and the
single-exciton states and, hence, are referred to as exciton
polarizations. The other two matrix elements, 	31 and 	32,
correspond to the transition between the single-exciton and
biexciton states and are commonly called biexciton polariza-
tions.

An ultrafast pulse is assumed to be spectrally broad
enough in order not to discriminate between the two dots in
the structure. Due to a small �subwavelength� distance be-
tween the dots, they cannot be resolved spatially, either.
Therefore, the pulse induces optical polarizations symmetri-
cally and independently in both dots. After the pulse, the
relevant elements of the density matrix have the values

	10�0� = 	20�0� = −
i

2
sin 
 cos2


2
, �3a�

	31�0� = 	32�0� = −
i

2
sin 
 sin2


2
, �3b�

where 
 is the pulse area.
After this instantaneous initial excitation, the density ma-

trix evolves according to the Liouville-von Neumann-
Lindblad equation of motion

	̇ = −
i

�
�HX,		 + L�		 , �4�

with

L�		 = ���−	�+ − 1
2 
�+�−,	�+	 , �5�

where

� =
E3�d�2��r

3��0c3�4

is the spontaneous decay rate. It can be noted that, from the
formal point of view, the evolution equation �4� is not
unique. In fact, a standard microscopic derivation39 involves
grouping the transitions into sets characterized by the values
of the transition energies and, therefore, produces two differ-
ent Lindblad equations, depending on the arbitrary classifi-
cation of the two radiating systems as “identical” or “differ-
ent.” Therefore, it does not provide any means for the study
of the transition from the independent decay to the collective
regime as the transition energy mismatch � is varied from
zero to a finite value. On the other hand, Eq. �4�, composed
of the unitary and the dissipative parts, is compatible with
the Wigner-Weisskopf description of the double QD
system,21,28 where the Markovian approximation is per-
formed without any arbitrariness �assuming �
E, so that
the reservoir spectral density does not vary considerably over
the relevant frequency range�.

Note that the collective coupling of the two dots to the
electromagnetic field, as described by Eq. �5�, results in the
appearance of cross terms of the form �−

�i�	�+
�j� �i� j�, which

are absent in the case of individual coupling to separate res-
ervoirs �see the Appendix�. These terms correspond to the
imaginary part of the coupling that appears in other
approaches.28–31 Thus, in the limit of vanishing biexciton
shift and �in the case of Refs. 30 and 31� of identical dots,
our model is fully equivalent to the small-system limit of
those theories.

The equation of motion �4� leads to the closed system of
four equations for the matrix elements of interest:

	̇10 = �− i
�

�
−

�

2

	10 + �− i

V

�
−

�

2

	20 + ��	31 + 	32� ,

�6a�

	̇20 = �− i
V

�
−

�

2

	10 + �i

�

�
−

�

2

	20 + ��	31 + 	32� ,

�6b�

	̇32 = �− i
VB

�
− i

�

�
−

3�

2

	32 + �i

V

�
−

�

2

	31, �6c�
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	̇31 = �i
V

�
−

�

2

	32 + �− i

VB

�
+ i

�

�
−

3�

2

	31. �6d�

This system of equations with the initial values given by Eqs.
�3a� and �3b� can be solved by the standard Laplace trans-
form method. Then, for the total emitted signal �Eq. �2�	, we
find

P�t� =
i

2�
i
�cos2


2
Ai + sin2


2
Bi�e�it, �7�

where �with the first index corresponding to the upper sign�

�1,2 = � i�̃− −
�

2
, �8a�

�3,4 = i���̃+ − VB/�� −
3�

2
, �8b�

A1,2 = 1 �
V/� − i�/2

�̃−

, �8c�

B1,2 =
�2�VB�̃− + 2�VBV/� − i�2VB − 2�2�/�

�̃−��2�V − �iVB + ����2�̃− � VB/� � i��	
,

�8d�

A3,4 = 0, �8e�

B3,4 =
��VB/� − 2i���2iV − iVB + ��� + 2iVB�̃−

�iVB + ����2�̃+ � VB/� � i�� � 2�V

+
4�V2/� − iVB

2 V/�2 + �VB
2 /�2�� + ��3

�̃+��iVB + ����2�̃+ � VB/� � i�� � 2�V	
,

�8f�

with

�̃� = ��V/��2 � iV�/� − �2/4 + ��/��2. �9�

The Fourier transform of this signal is

P̂��� =

cos2


2
f��� + sin2


2
g���

�� − i�1��� − i�2��� − i�3��� − i�4�
, �10�

where

f��� = i�� + V/���� − i�3��� − i�4� �11�

and

g��� = i�� − VB/� − V/� + 3i���� − i�1��� − i�2�

+ 2�VB�V/� + ��/� − 2�2�/�2.

It should be noted that the frequency � in the above equa-
tions �and in the following discussion� is defined with respect
to the mean transition frequency, that is, �= �̃−E /�, where
�̃ is the actual frequency of the emitted electromagnetic ra-
diation.

IV. DISCUSSION

The evolution of the optical polarization after an instan-
taneous excitation depends on whether the dots are coupled
or not. In this section we will discuss the two cases, compar-
ing the optical response of the two dots interacting with the
common reservoir in the Dicke limit �separation of the dots
is small compared to �c /E�, using the solution derived in
Sec. III, with the response of a hypothetical system consist-
ing of two dots interacting with independent reservoirs.

A. Uncoupled dots

In the case of uncoupled QDs �V=VB=0� the optical re-
sponse is determined by the interplay of the other two pa-
rameters: the recombination rate � and the transition energy
mismatch �. In Fig. 2 we show the optical polarization in the
time and frequency domains for a fixed value of the radiative
recombination time 1 /�=100 ps. We assume here 
→0
�linear-response limit�, so that the imaginary part of the Fou-
rier transform of the normalized signal is proportional to the
absorption spectrum of the DQD. In this case, P�t� is purely
imaginary.

For ���� the evolution of the optical signal is domi-
nated by optical beats due to the interference of fields emit-
ted from the two dots �Figs. 2�a� and 2�c�, gray dashed-
dotted line	. There is no noticeable difference between the
cases of a common reservoir �Fig. 2�a�	 and separate reser-
voirs �Fig. 2�c�	. This is not surprising since systems with
different transition energies emit into different frequency
sectors of the reservoir and thus essentially interact with dif-
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1

Im
P

(t
)

(a)

0.1
0.01

0.004
0.001

-1

0

1

0 0.2 0.4 0.6 0.8

Im
P

(t
)

t [ns]

(c)

0.1
0.01

0.004
0.001

Im
P

(ω
)

(b)

-0.1 0 0.1

Im
P

(ω
)

ω [ps-1]

(d)

FIG. 2. �Color online� ��a�,�c�	 The optical polarization as a
function of time after an ultrafast excitation for uncoupled dots
�V=VB=0� in the linear-response limit �
→0�. ��b�,�d�	 The corre-
sponding spectrum. �a� and �b� show the results for QDs interacting
with a common reservoir in the Dicke limit, while �c� and �d� refer
to dots radiating into independent reservoirs. Here, �=0.01 ps−1

and the values of � /� are as shown in the figure �in ps−1�. Line
definitions in �b� and �d� are the same as in �a� and �c�. Dotted lines
in �a� and �c� show the envelope �exp�−�t /2�. The vertical scale in
�b� and �d� is the same.
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ferent reservoirs anyway. The two spectra �Figs. 2�b� and
2�d�	 also look indistinguishable in this case.

This situation changes as the energy mismatch � is de-
creased �Fig. 2, blue and green dashed lines�. One effect,
which follows from Eqs. �8a� and �9�, is that the frequency is
decreased in the collective case, although this does not lead
to any qualitative difference in the evolution of the optical
polarization represented in the time domain �Figs. 2�a� and
2�c�	. A much more pronounced difference is visible in the
spectra �Figs. 2�b� and 2�d�	. From Eqs. �10� and �11�, one
has in the present special case, for ���� /2,

Im P���
 = 0,V = 0,� � ��/2�

=
��/�+

4�� − �+�2 + �2/4
−

��/�+

4�� + �+�2 + �2/4
,

where �+=��� /��2−�2 /4. This takes the form of two
Lorentzians centered around �= ��+ only as long as � /�+
is small and only for ��−�+���. In fact, P��=0�=0, which
means that the spectrum must considerably differ from the
sum of two Lorentzians when the latter overlap. This can be
seen in Figs. 2�b� and 2�d� �blue dashed line�.

The particular features of the DQD spectrum in the com-
mon reservoir case become even more pronounced when �
��� /2. Now, �+ is imaginary and the absorption spectrum
can be written as

Im P���
 = 0,V = 0,� � ��/2�

=
�+

��+�
�+

4�2 + �+
2 −

�−

��+�
�−

4�2 + �−
2 ,

where ��=��2��+�. Since �+→2� as �→0, the width of
the first Lorentzian becomes twice larger than it was for in-
dependent reservoirs. This term corresponds to the superra-
diant component of the system evolution.21 The second
Lorentzian �which is negative� becomes narrow, since �−
→0 as �→0, and represents the subradiant component.
However, its weight vanishes in the limit of identical dots
�note that the amplitudes of the two Lorentzians are always
exactly opposite, in accordance with P��=0�=0	. These
spectral features are reflected by the evolution in the time
domain shown in Fig. 2�a�. For � slightly below �� /2
�green long dashed line�, the evolution is a sum of two ex-
ponential factors: one positive, large, and short living and the
other one negative, small, and long living. In fact, however,
the resulting behavior is hardly distinguishable from the
strongly damped oscillations appearing for individually emit-
ting dots �Fig. 2�c�	. Only for �
�� the difference becomes
remarkable: in the case of collective emission, the polariza-
tion becomes dominated by the superradiant component,
which leads to a decay with a doubled rate, as compared to
the separate reservoir case �red solid lines in Figs. 2�a� and
2�c�	.

These results allow one to understand the transition from
the limit of different systems �separate reservoirs� to identi-
cal systems �common reservoir�. This transition is mani-
fested in the reconstruction of the absorption spectrum, as
shown in Fig. 3. As long as ���� /2, the two dots are
coupled to different frequency sectors of the electromagnetic

reservoir and the spectrum of the DQD system is almost
indistinguishable from that of two dots coupled to separate
reservoirs. In the most interesting parameter range, �
��� /2, the spectrum is non-Lorentzian as long as �
��� /2 and then switches to an unusual form of two Lorent-
zians with different weights and opposite signs centered at
zero frequency. Only then the evolution of polarization has
two exponentially decaying components.

Although the features discussed above are interesting
from a general physical point of view, their appearance re-
quires that the energy mismatch between the dots is compa-
rable with the radiative line width, that is, on the order of
tens of �eV. In spite of the rapid progress of nanostructure
manufacturing, this can be very hard to achieve experimen-
tally, unless the dots can be driven to resonance by external
fields �e.g., taking advantage of a different strength of the dc
Stark effect in the two dots�. As we will show in Sec. IV C,
if the dots are coupled by an excitation transfer interaction,
the collective effects manifest themselves already for much
larger values of the energy mismatch. Before we proceed to
this case, we study the effect of the other type of long-range
interaction between confined excitons, which is due to static
electric dipoles and results in a biexciton shift.

B. Coupled dots: Biexciton shift

In this section we discuss the evolution of the optical
polarization for a system of two QDs coupled by a static
dipole interaction VB �we keep V=0�. This coupling is im-
portant only for the third- �and higher-� order terms in the
optical signal. In the parameter range where the transition
between the two regimes of evolution occurs, as discussed in
Sec. IV A, the biexciton shift VB �which is of the order of
meV� is likely to be the largest energy scale of the problem.
Therefore, we restrict the discussion to the case of VB��
and VB���. Then, from Eq. �8d�, in the leading order,
B1,2��� /VB, which means that the correction to the com-
ponents evolving with the frequencies i�1 and i�2, as well as
to the spectrum of the optical response in the frequency
range studied in Sec. IV A, is negligible.

In the spectral region of ��VB /�, a feature appears when
VB�0 �see Fig. 4�b�	. The shape of this feature evolves in a
different way, as compared to the absorption line at �=0. For
���� two nearly Lorentzian lines of almost equal magni-

-0.05 0 0.05

Im
P

(ω
)

ω [ps-1]

∆/h- = 0.04 ps-1

-0.05 0 0.05
ω [ps-1]

∆/h- = 0.01 ps-1

-0.05 0 0.05
ω [ps-1]

∆/h- =
0.003 ps-1

FIG. 3. �Color online� The transition from the “different dots”
regime to the “identical dots” regime as manifested by the form of
the absorption spectrum of a DQD system. Here, �=0.01 ps−1 and
the values of � /� are shown in the figures. Red solid lines: the
actual system; blue dashed lines: the hypothetical system made of
two dots interacting with separate reservoirs.
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tude appear at �= �VB��� /�. These two lines collapse as
���� but in this case they retain their approximately
Lorentzian shape. For ���� /2 both Lorentzians are cen-
tered at the same frequency �=VB /�, as in the absorption
spectrum discussed above, but now their widths tend to �
and 2� as �→0. The area of the narrower line �which is
negative� vanishes in this limit which, in view of the finite
width, implies that the amplitude of this line vanishes. On
the other hand, the area of the broader line remains finite.
This means that the evolution of the biexciton beats �pre-
sented in Fig. 4�a�	 shows a two-rate damping, which be-
comes dominated by the short-living component, as the dots
become identical. In contrast, as follows from the formulas
listed in the Appendix, in the case of independent reservoir
the polarization decay rate is always 3� /2.

C. Coupled dots: Transfer interaction

In this section we consider the case of two dots coupled
by an excitation transfer interaction, that is, V�0 in Eq. �1�.
We assume that the magnitude of this coupling is larger than
the relaxation rate, V���. As we will see, values of the
energy mismatch � for which the transition to the collective
behavior takes place is now on the order of V, so that �
becomes the smallest frequency in the problem. One can
therefore simplify the discussion by retaining only the terms
up to linear order in � in Eqs. �8a� and �8b� and taking the
amplitudes given by Eqs. �8c�–�8f� at �=0.

Then one gets �1,2= � i�−�� /2 and A1,2=1�V / ����,
where ��= �1�V / ����	� and �= ��2+V2	1/2 /�. Thus, in
the linear-response limit, the system shows a decay described
by two exponential components. The subradiant one decays
with the rate �− /2�� /2 and its amplitude vanishes when
�
V. The decay rate of the superradiant component is
�+ /2�� /2. This component dominates the decay in the
limit of strongly coupled dots.

The evolution of the optical polarization in the present
case is shown in Fig. 5�a�, where we plot the envelopes of
the optical beats for three different sets of parameters � and
V. Two effects that may be noticed are the decrease in the
beating amplitude and the change in the decay rate of the
signal as the energy mismatch decreases and the coupling
increases. By comparison with the case of independent res-

ervoirs �Fig. 5�c�	, one can see that the first of these two
effects appears in both cases. A nonselective excitation in-
duces a symmetric superposition of the two occupations,
which has a larger overlap with one of the eigenstates of the
coupled dots. Therefore, one of the oscillators contributing to
the beats has a larger amplitude and the beating amplitude is
reduced.

In contrast, the other effect is related to the collective
interaction with the photon reservoir. In the physical case of
a common reservoir, the eigenstate dominating the response
is the superradiant one. In the limit of �→0 only the super-
radiant state is excited �it coincides with the optically active
symmetric superposition�. This is reflected by the decay of
the optical response, as shown in Fig. 5�a�. For ��V, the
optical polarization decays with the rate � /2, which is char-
acteristic of a single system. As the coupling V becomes
comparable with the energy mismatch �, the decay becomes
nonexponential and, in fact, contains two components decay-
ing with different rates. When the coupling dominates over
the energy mismatch, V��, the subradiant component van-
ishes and the signal decays with the doubled rate �. On the
contrary, hypothetical dots coupled to independent reservoirs
�Fig. 5�c�	 always show a decay of the optical response with
the same rate � /2.

The absorption spectrum corresponding to the time-
resolved response discussed above is shown in Figs. 5�b� and
5�d�. The two models of common and separate reservoirs
differ essentially. In both cases there is a similar transfer of
line weight from one line to the other as the energy mismatch
decreases and the coupling increases. However, the way the
line shapes change is very different. In the case of indepen-
dent reservoirs �Fig. 5�d�	, the linewidths remain constant
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FIG. 4. �Color online� �a� The optical polarization as a function
of time after an ultrafast excitation for dots coupled by the static
dipole moments only �V=0, VB�0� for tan2�
 /2�=0.2, �
=0.01 ps−1, � /�=0.01 ps−1, and VB /�=−0.3 ps−1. Blue dashed
line: real part; red solid line: imaginary part. �b� The Fourier trans-
form of the polarization signal. Red solid line: parameters as in �a�.
Green dashed line: � /�=0.001 ps−1.
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�no subradiance and superradiance effects� and only the line
amplitudes change. On the contrary, when the dots are
coupled to a common reservoir, the amplitudes of the lines
are almost constant but their widths change. This is quite a
remarkable signature of the joint appearance of interdot cou-
pling and collective radiative decoherence in the system. It is
also interesting to note that, since the weight of each line
behaves almost in the same way in both cases, no difference
can be observed if the absorption is averaged over an inho-
mogeneous ensemble.

V. CONCLUSIONS

We have shown that the coexistence of coupling between
quantum dots and collective effects in their interaction with
the electromagnetic environment leaves clear traces in the
optical response of these systems. For uncoupled dots, the
collective radiative properties �subradiance and superradi-
ance� become important only when the energy mismatch
falls below the absorption linewidth. The decay of the polar-
ization then evolves from damped oscillations �beats� for dif-
ferent dots to a superradiant exponential decay for identical
dots. For very similar dots the corresponding absorption line
is composed of two Lorentzians superposed at the same tran-
sition frequency, with the same amplitude but different
widths and opposite signs.

Coupling between the dots changes this picture consider-
ably. Now, superradiance effects can be observed as long as
the energy mismatch is smaller or comparable to the cou-
pling strength. The envelope of the optical beats in this case
decays with the usual rate for different dots and with the
double �superradiant� rate when the coupling becomes much
larger than the energy mismatch. In the intermediate range,
the decay is composed of two exponential components.

These effects in the time-resolved optical response are
reflected in the absorption spectrum, where the lines corre-
sponding to the small and large components in the optical
response loose or gain, respectively, their widths �reflecting
the subradiance and the superradiance properties�. This pre-
sents a clear difference with respect to the �hypothetical�
case of dots emitting to different reservoirs where the lines
loose or gain amplitude, while their widths remain constant.
This essentially different form of absorption lines which, for
sufficiently strongly coupled dots, can be observed even for a
transition energy mismatch in the range of milli-electron-
volts provides an experimentally accessible signature of cou-
pling and collective decoherence in double quantum dots.
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APPENDIX: RADIATIVE DECAY TO INDEPENDENT
RESERVOIRS

In this appendix, we derive the equations of motion for
the optical polarizations and find the resulting optical re-
sponse in the case of a two coupled QDs interacting with
separate photon reservoirs. The initial values for the relevant
matrix elements �at t=0� are given by Eqs. �3a� and �3b�. At
t�0, the density matrix evolves according to Eq. �4� but the
Lindblad operator now has the form

L�		 = �
i=1,2

���−
�i�	�+

�i� −
1

2

�+

�i��−
�i�,	�+� .

This equation corresponds to the following system of evolu-
tion equations for the optical coherences:

	̇10 = �− i�/� − �/2�	10 − i�V/��	20 + �	32,

	̇20 = − i�V/��	10 + �i�/� − �/2�	20 + �	31,

	̇32 = �− iVB/� − i�/� − 3�/2�	32 + i�V/��	31,

	̇31 = i�V/��	32 + �− iVB/� + i�/� − 3�/2�	31.

By solving this system of equations, one finds the normal-
ized optical polarization defined by Eq. �7� with

�1,2 = � i� −
�

2
, �3,4 = i��� − VB/�� −

3�

2
,

A1,2 = 1 �
V

��
, A3,4 = 0,

B1,2 =
���VB/� − i����� + V/�� − 2�2/�2	

2���− iVB/� − ����VB/� � i� + 2��	
,

B3,4 =
�iVB + ����VB − 2V��V/� � �� + 2�2VB/�

��iVB + �����VB � i�� − 2���
,

where �=�V2+�2 /�. The Fourier transform of this signal is

P��� =

cos2


2
f��� + sin2


2
g���

�� − i�1��� − i�2��� − i�3��� − i�4�
,

where f���= i��+V /�+ i� /2���− i�3���− i�4� and

g��� = i�� − V/� − VB/� + 5i�/2��� − i�1��� − i�2�

+ ��� + V/� + i�/2��VB/� − i�� − 2�2�/�2.
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